





AN ACP GROUP COMPANY





# Scaling Analysis Services in the Cloud



gerhard@gbrueckl.at blog.gbrueckl.at



#280 VIENNA 2014

#### About me

Gerhard Brückl

Working with Microsoft BI since 2006 Windows Azure / Cloud since 2013

focused on Analytics and Reporting

Blog:blog.gbrueckl.ateMail:gerhard@gbrueckl.at



#### pm**On**e

SSAS MAESTRO by Microsoft



# Agenda

- Why do we need to scale?
- How can we scale
  - Scale Up
  - Scale Out
- Windows Azure



# Why do we need to scale?

- Growing amount of data
- Growing amount of users
- Actuality of data
- Complexity of data loads
- Latency (remote locations)



# Things we want to achieve

- Better Query Performance
  - Single User
  - Concurrent User
- Faster availability of data
- High Availability
- Easy maintenance
- Flexible resource usage / peak times
- Better Processing Performance



#### How can we scale?

#### Scale Up

Increase resources of current machine

#### Scale Out

- Add further machines
- Create "Farm"



#### Increase

- CPU (clock rate vs. #cores)
- Memory
- 10
- (Network)





#### Pros

- Solves most issues
- Straight forward / simple
- No change in architecture

#### Cons

- Can only Scale Up to a certain point
- Expensive in terms of high-end hardware



#### CPU

- Parallel Processing / Querying
- Concurrent users
- (faster calculations)

Memory

Caching – relieve IO / CPU

I/O

Faster initial Querying / Processing



|                                    | Increase<br>CPU | Increase<br>Memory | Increase<br>IO |
|------------------------------------|-----------------|--------------------|----------------|
| Cube size (in general)             | +               | +                  | +              |
| Query Performance (single user)    | +               | +                  | +              |
| Query Performance (multiple users) | +               | +                  | ~              |
| Processing Performance             | +               | ~                  | +              |
| Actuality of data                  | +               | ~                  | +              |
|                                    |                 |                    |                |
| High Availability                  | ~               | ~                  | ~              |
|                                    |                 |                    |                |



# Scale Out

- Increase number of machines
- Distribute work load
- Handle peaks





# Scale Out

#### Pros

- "unlimited" scalability
- Flexibility
  - easy to extend / shrink farm
- Can be leveraged during data loads

#### Cons

- Change in Architecture
- Harder to maintain
- "Only" solves concurrency issues
- No improvements for single queries



# Scale Out

|                                    | Increase Number<br>of Machines |
|------------------------------------|--------------------------------|
| Cube size (in general)             | ~                              |
| Query Performance (single user)    | ~                              |
| Query Performance (multiple users) | +                              |
| Processing Performance             | +                              |
| Actuality of data                  | +                              |
|                                    |                                |
| High Availability                  | +                              |
|                                    |                                |



# Windows Azure and Analysis Services



- Infrastructure as a Service (laaS)
  - e.g. hosted virtual machine



# Windows Azure IaaS

- Hosted Infrastructure
- Virtual Machines
- Virtual Storage
- Virtual Network



#### Windows Azure Basic Considerations and setup

Choose a Region

#### Create an Affinity Group

- Per Region
- Per Subscription

#### Create Network

Per Affinity Group





#### Windows Azure Virtual Network

Per Region / Affinity Group

#### Place VMs in same network

#### Integrate on-site services

- Point-to-Site Connectivity
- Site-to-Site Connectivity





#### Windows Azure Storage Account

STORAGE

Per Region / Affinity Group

### Blobs / Tables / Queues • VHDs

<u>Locally Redundant</u> Geo Redundant Geo Redundant (Read-Only)



#### Windows Azure Virtual Machine



#### Per Region / Affinity Group / <u>Virtual Network</u>

Created from Gallery

- Public Templates
- Private Templates

Different Sizes → Scale Up

Availability Sets  $\rightarrow$  Scale Out



# Windows Azure Scale Up



| Size        | # of Cores | Memory  | # of Disks | Price / Month * |
|-------------|------------|---------|------------|-----------------|
| Extra small | 1 (shared) | 768     | 1          | 315 €           |
| Small       | 1          | 1,750   | 2          | 354 €           |
| Medium      | 2          | 3,500   | 4          | 404 €           |
| Large       | 4          | 7,000   | 8          | 504 €           |
| Extra Large | 8          | 14,000  | 16         | 1,008 €         |
| A5          | 2          | 14,000  | 4          | 526€            |
| A6          | 4          | 28,000  | 8          | 747 €           |
| A7          | 8          | 56,000  | 16         | 1,495 €         |
| (A8)        | 8          | 56,000  | ? / SSD    | ?               |
| (A9)        | 16         | 112,000 | ? / SSD    | ?               |

\*) SQL Server **SE** + Windows



#### Windows Azure Scale Up

Simply change size

Restart required

# Limited Capacities

- CPU
- Memory
- IO

#### Use dedicated machines!







Things to consider:

- Adjust I/O sub-system
  - Add VHDs / rebuild Storage Pool
- Adjust memory limits
  - Absolute settings
- Adjust CPUs
  - Thread settings
  - Group Affinity



![](_page_23_Picture_1.jpeg)

For frequent Scale Ups / Scale Downs

- Use default settings
- Use only relative settings
  - Memory settings in %
  - Thread settings 0 or <0</p>

![](_page_23_Picture_7.jpeg)

![](_page_24_Picture_1.jpeg)

#### On-Premise vs. Cloud

| CPU                | On-Premise | Cloud "A7"  |
|--------------------|------------|-------------|
| NUMA Nodes         | 2          | 2           |
| Logical Cores      | 36         | 8           |
|                    | <b></b>    |             |
| Memory             | nise       | Cloud "A7"  |
| Physical Memory    | , 12 GB    | 56 GB       |
| SSAS / TotalMemory | 100 GB     | 47 GB (85%) |
|                    |            |             |
| 10                 | On-Premise | Cloud "A7"  |
| Disks (SSAS only)  | 2          | 2           |
| RAID-Set           | RAID-0     | RAID-0      |

![](_page_24_Picture_4.jpeg)

![](_page_25_Picture_1.jpeg)

Processing Performance:

# Test SSAS-DB:26 GBTest SQL-DB:106 GB

|                     | <b>On-Premise</b> | Cloud "A7" |
|---------------------|-------------------|------------|
| Parallel Processing | 00:13:15          | 01:25:41   |
| Serial Processing   | 01:36:05          | 05:17:28   |

![](_page_25_Picture_5.jpeg)

![](_page_26_Picture_1.jpeg)

#### <u>Query Performance:</u>

7 Queries, +1 User/min, 60 mins

| Response time in Seconds | On-Premise | Cloud "A7" |
|--------------------------|------------|------------|
| Single Query1            | 3.25       | 15.30      |
| Single Query2            | 51.60      | 86.30      |

| Finished Tests         | On-Premise | Cloud "A7" |
|------------------------|------------|------------|
| After 20 minutes/users | 347        | 166        |
| After 40 minutes/users | 871        | 346        |
| After 60 minutes/users | 1,356      | 480 (*)    |

![](_page_26_Picture_6.jpeg)

![](_page_27_Picture_0.jpeg)

![](_page_27_Picture_1.jpeg)

#### Scales with Number of CPUs

Memory for concurrency

IO for bigger databases

![](_page_27_Picture_5.jpeg)

#### Windows Azure Scale Out

Easily create/add new VMs

- Images
- Script

#### Built-In Load Balancing

- Availability Sets
- Traffic Manager

Unused VMs create no costs

![](_page_28_Picture_8.jpeg)

# Windows Azure Availability Sets

Per Cloud Service

Several VMs share same Public Port

Used for

- High Availability
  - Fault Domains
  - Update Domains
- Load Balancing

![](_page_29_Picture_8.jpeg)

![](_page_29_Picture_9.jpeg)

![](_page_29_Picture_10.jpeg)

### Windows Azure Traffic Manager

Per Subscription

Several Cloud Services share URL

Used For

- Availability
- Failover
- Performance

![](_page_30_Figure_7.jpeg)

![](_page_30_Picture_8.jpeg)

![](_page_30_Picture_9.jpeg)

#### Windows Azure Availability Sets and Traffic Manager

![](_page_31_Figure_1.jpeg)

|               | Traffic Manager | Availability Set |
|---------------|-----------------|------------------|
| Regions       | Any             | one              |
| Round Robin   | Yes             | Yes              |
| Performance   | Yes             | No               |
| Failover      | Yes             | No               |
| Routing-Level | DNS             | TCP / UDP        |

![](_page_31_Picture_3.jpeg)

#### Windows Azure Availability Sets

Auto-Scale Feature

- Scale by Metric
- Scale by Schedule

Only for Availability Sets

Also Third party tools

![](_page_32_Picture_6.jpeg)

![](_page_32_Picture_7.jpeg)

#### Windows Azure Analysis Services Settings

| Memory           | Default Value | Suggested Value |
|------------------|---------------|-----------------|
| LowMemoryLimit   | 65            | 85              |
| TotalMemoryLimit | 80            | 90              |
| PreAllocate      | 0             | 85              |

| OLAP/Process              | Default Value | Suggested Value |
|---------------------------|---------------|-----------------|
| AggregationMemoryLimitMin | 10            | 5               |
| AggregationMemoryLimitMax | 80            | 10              |

![](_page_33_Picture_3.jpeg)

![](_page_34_Picture_1.jpeg)

Affinity Groups

Storage Account

- Locally Redundant
- Geo Redundant
- Geo Redundant (Read-Only)

![](_page_34_Picture_7.jpeg)

Limits Storage Account (Locally Redundant)

- 10 Gb/s in / 15 Gb/s out
- 20,000 Transaction/s

Blobs and VHDs

- 500 IO/s
- 60 MB/s

![](_page_35_Picture_7.jpeg)

Windows Server 2012 Storage Pools

- Abstraction Layer
- (Software) RAID

GUI very buggy

→ User PowerShell instead!

RAID / Storage Pools vs. Single Drives

![](_page_36_Picture_7.jpeg)

<u>Theory – 16 Disks:</u> 60 MB/s \* 16 → 960 MB/s 500 IO/s \* 16 → 8,000 IO/S

<u>Reality – "A7" with 16 Disks:</u> ~110 MB/s ~6,500 IO/s

![](_page_37_Picture_3.jpeg)

![](_page_38_Figure_1.jpeg)

#### 32k Random Reads

![](_page_38_Figure_3.jpeg)

#### 16k Random Reads

![](_page_38_Figure_5.jpeg)

#### 64k Random Reads

![](_page_38_Figure_7.jpeg)

![](_page_38_Picture_8.jpeg)

![](_page_39_Figure_1.jpeg)

![](_page_39_Figure_2.jpeg)

#### 64k Random Reads

### IO scales linear for small blocks No improvements for bigger blocks

![](_page_39_Picture_5.jpeg)

- The special Temporary Storage (D:\)
- superfast but volatile storage

![](_page_40_Figure_3.jpeg)

saturdav

<u>MSDN:</u> "...performance is not guaranteed to be predictable"

Deleted on resets, reboots, fail overs etc.

Scale-Outs with separate Query and Processing Servers

![](_page_41_Picture_4.jpeg)

![](_page_42_Figure_1.jpeg)

![](_page_42_Picture_2.jpeg)

#### Windows Azure Processing Analysis Services

![](_page_43_Figure_1.jpeg)

# Conclusion & Findings Scale Up

Easy to do

Only limited scalability

Watch out for:

- Disk / IO Setup
- absolute SSAS Settings

![](_page_44_Picture_6.jpeg)

### Conclusion & Findings Scale Out

- Almost everything can be automatized
- Create VMs
- Setup SSAS

Very flexible

- Shutdown unused VMs
- Auto-Scale Service

![](_page_45_Picture_7.jpeg)

# Conclusion & Findings Scale Out

- Use Availability Sets if possible
- Fault Domains
- Update Domains
- Use Traffic Manager for
- Global Scale-Out
- Fail-Over

![](_page_46_Picture_7.jpeg)

### Conclusion & Findings Scale Out

"Sticky Session" not supported! Don't use "DirectReturn"

<u>Possible</u> issues with Session Objects Calculated members/sets

- Excel Pivot Tables
- XL Cubed

Writeback

![](_page_47_Picture_7.jpeg)

# Conclusion & Findings

Use Storage Pools

Max # of Disks

Upcoming Changes

- A8 / A9 VMs
- Internal Changes

![](_page_48_Picture_6.jpeg)

![](_page_49_Picture_0.jpeg)

![](_page_49_Picture_1.jpeg)

AN ACP GROUP COMPANY

![](_page_49_Picture_3.jpeg)

# THANK YOU!

![](_page_49_Picture_5.jpeg)